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Renormalization Group at Criticality and Complete 
Analyticity of Constrained Models: A Numerical Study 
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We study the majority rule transformation applied to the Gibbs measure for the 
2D Ising model at the critical point. The aim is to show that the renormalized 
Hamiltonian is well defined in the sense that the renormalized measure is 
Gibbsian. We analyze the validity of Dobrushin-Shlosman uniqueness {DSUI 
Iinite-size condition Ibr the "constrained models" corresponding to different con- 
figurations of the "'image" system. It is known that DSU implies, in our 2D case, 
complete analyticity from which, as recently shown by Hailer and Kennedy. 
Gibbsianness Ibllows. We introduce a Monte Carlo algorithm to compute an 
upper bound to Vasserstein distance (appearing in DSU) between finite-volume 
Gibbs measures with different boundary conditions. We get strong numerical 
evidence that indeed the DSU condition is verified [br a large enough volume 
V Ibr all constrained models. 

KEY WORDS:  Majority rule; renormalization group; non-Gibbsianness; 
finite-size conditions: complete analyticity: Ising model. 

1. I N T R O D U C T I O N  

In recent years much effort has been devoted to the problem of  a correct 
definition, on rigorous grounds, of  various real-space renormalization- 
group maps. 

The main question is whether or not a measure 

t,=T~,~ (1.1) 
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arising from the application of a renormalization group transformation 
(RGT) T~,, defined "on scale b," to the Gibbs measure /~ is Gibbsian. 
In other words, we ask whether or not v is the Gibbs measure corresponding 
to a finite-norm translationally invariant potential so that the "renor- 
malized Hamiltonian" is well defined. 

To be concrete, let us suppose that P=P/~.h is the Gibbs measure 
describing the 2D Ising model at inverse temperature fl and external 
magnetic field h # 0. Moreover, we assume that our RGT can be expressed 
a s  

v(o") = ~  Tt,(a', o-) U/,.h(O') (1.2) 
, - r  

where T~,(a', a) is a normalized nonnegative kernel. The system described 
in terms of the a variables by the original measure iL is called the "object 
system." The a'  are the "block variables" of the "image system" described 
by the renormalized measure v. 

We can think of the transformation T~, as directly acting at infinite 
volume or we can consider a finite-volume version and subsequently try to 
perform the thermodynamic limit. We refer to ref. 12 as the basic reference 
for a clear and complete description of the general setup of renormalization 
maps from the point of view of rigorous statistical mechanics. 

The above-mentioned pathological behavior (non-Gibbsianness of v) 
can be a consequence of the violation of a necessary condition for 
Gibbsianness called quasilocalio~/2L ~2.37~ It is a continuity property of the 
finite-volume conditional probabilities of v which, roughly speaking, says 
that they are almost independent of very far away conditioning spins. 

In ref. 21 it is shown that a sort of converse statement holds true, 
namely quasilocality+nonnullness (uniform positivity of conditional 
probabilities) of a stochastic field implies Gibbsianness, but only in the 
sense of the existence of a finite-norm, but in general not translationally 
invariant potential associated to v. The construction of the potential in 
Kozlov's proof is somehow artificial: it involves reordering of a semicon- 
vergent sum. To get a translationally invariant finite-norm potential one 
needs some additional, stronger assumptions on how weakly the condi- 
tional probabilities of v depend on far-away conditioning spins. We refer to 
ref. 1 for a more detailed discussion on this point. 

In some situations (see, for instance, refs. 2 and 15) it is possible to use 
much stronger methods, based on the cluster expansion, to compute renor- 
malized potentials, showing finiteness of their norm. 

In many interesting examples ~')" TM i_,~ violation of quasilocality and 
consequently nonGibbsianness of the renormalized measure v are a direct 
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consequence of the appearance of a firstorder phase transition for the 
original (object) system described by/~ conditioned to some particular con- 
figuration of the image system. More precisely, given a block configuration 
a', let us consider the probability measure on the original spin variables 
given by 

Tl,(a', a) lt(a) ~. , (a)  = 
Z,,  T,,(a', q) /~(q) 

It defines the "constrained" model corresponding to a' (which here plays 
the role of an external parameter). 

For  some particular a'  it may happen that the corresponding measure 
#, , (a)  exhibits long-range order. See also refs. 14 and 16, where this 
mechanism was first pointed out. 

One can ask about the "robustness" of the pathology of non-Gibbsian- 
ness. There are examples ~2'~ in which, even though the measure v-- Th/2/j.h 
is not Gibbsian, one has that with the same fl, h, by choosing b ' > b  
sufficiently large, the measure v '=  T~,,IQ~.h is Gibbsian. Alternatively, one 
can iterate the map and, even though after the first step the resulting renor- 
malized measure is not Gibbsian, it may happen after a sufficiently large 
number of iterations that one gets back to the set of Gibbsian measures. 
This is often related to the fact that, given suitable values of the parameters 
fl, h (near the coexistence line h = 0 ,  f l>f l , ) ,  on a suitable scale b some 
constrained model can undergo a phase transition (somehow related to the 
phase transition of the object system) whereas given the same h, ,8, for 
sufficiently large scale b any constrained model is in the one-phase region. 

Another notion of robustness-of the pathology ~2x~~ refers to seeing 
whether or not it survives after application of a decimation transforma- 
tion;~2~ this can be relevant since a decimation transformation does not 
change the thermodynamic functions or the long-range correlations. 

Finally, weaker notions of Gibbsianness of a renormalized measure v 
can also be considered. The usual notion of Gibbsianness requires a control 
of quasilocality of v uniJbrm in a'. It may happen that the particular a'  
responsible for the pathology is highly nontypical with respect to v. It 
appears plausible to ask for quasilocality only for v-almost all configura- 
tions a'. ~5 ~_~4~ See ref. 10 for a nice up-to-date review of all the above 
problematic. 

Now, in many examples even though the object system is well inside 
the one-phase region, for some particular block configuration a' the corre- 
sponding constrained model undergoes a first-order phase transition. Con- 
versely, there are many indications that if the constrained models are in the 
weak-coupling regime, then Gibbsianness of the renormalized measure 
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follows. Recently Hailer and Kennedy gave very interesting new rigorous 
results in this direction. They proved, under very general hypotheses, that 
if all constrained models are uniformly completely analytical, ~7"8~ then the 
renormalized measure is Gibbsian with a finite-norm potential which can 
be computed via a convergent cluster expansion. 

Let us give now the example of the block-averaging transformation 
(BAT). Suppose we partition Z 2 into square blocks Bi of side 2. In this case 
the new measure v is obtained by assigning to each block B~ an integer 
value m~e { - 4 ,  - 2 ,  0, +2,  +4} and by computing the probability, with 
respect to the original Gibbs measure kt/~.~,, of the event y~, .~ cr.=m~. 
Then in this case we have 

i if Y' a , = m i  T/,(m, a) = ,.~ 8, 
otherwise 

Vi 

In this case a constrained model is a "multicanonical" Ising model, namely 
an Ising model subject to the constraint of having, for every i, magnetiza- 
tion mi in the block Bi. It has been shown in ref. 12 that for the BAT trans- 
formation the constrained model corresponding to m; = 0, Vi, undergoes a 
first-order phase transition at low enough temperature and that this implies 
violation of quasilocality and then non-Gibbsianness of the renormalized 
measure v. Notice that for any constrained model with given {m~} the 
value of the external magnetic field h is totally irrelevant. On the other 
hand, for h very large one can prove, by standard methods, absence of 
phase transition for the original model in the strongest possible sense: com- 
plete analyticity in the strong Dobrushin-Shlosman sense holds true in this 
case. This, as shown in ref. 12, gives an example of non-Gibbsianness of a 
measure v arising from the application of a renormalization map to a 
measure/~ corresponding to the very weak coupling region. We remark 
that, as shown in ref. 12, this non-Gibbsianness is robust with respect to 
the choice of the scale b (or with respect to iteration), whereas for large h 
it can be eliminated by applying one decimation transformation/3~ 

Other interesting examples have been found/'~ ~t~ 
We stress that, in general, it is not sufficient to control that one single 

constrained model is in the one-phase region to imply Gibbsianness of the 
renormalized measure. In ref. 3 and in ref. 1 for the BAT transformation it 
was suggested that the fact that the constrained model with m~= 0 was in 
the high-temperature phase could be sufficient to imply the existence of a 
finite-norm renormalized potential. Recently van Enter showed with an 
example that this belief is not sufficiently justified and some extra 
arguments related to the specific nature of the BAT transformation are 
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needed to imply Gibbsianness from absence of phase transitions for the 
{mi= 0} constrained model. ~9' io~ 

Thus, in general, the moral is that what is relevant for Gibbsianness 
of v are the (intermediate) constrained models; we repeat that it can be 
sufficient that even only one constrained model undergoes a phase trans- 
ition with long-range order (despite the possible very weak coupling regime 
of the object system) to imply non-Gibbsianness of v; whereas in general, 
absence of phase transition in a very strong sense is needed for all con- 
strained models to get a sufficient condition which implies Gibbsianness of 
v in the strong, cluster expansion, sense, as shown in ref. 15. 

In the present paper we will analyze a particular RGT: the majority 
rule transformation applied to the 2D critical Ising model. It will be 
precisely defined in Section 2. This transformation, in the same situation of 
criticality, was studied by Kennedy]  ~91 who established some rigorous 
results reducing absence of phase transition for some particularly relevant 
constrained models to the verification of some suitable "finite-size condi- 
tions" introduced in ref. 18. It is an "almost computer assisted proof" of 
absence of phase transition for these constrained models. 

In the present paper we inquire after the validity, in principle for every 
possible constrained model, of a finite-size condition: the Dobrushin-  
Shlosman uniqueness condition (DSU, see Section 2), which implies (as 
explained in Section 2) complete analyticity, and then, using the results of 
ref. 15, Gibbsianness of v. 

Strictly speaking, the proof of ref. 15 does not directly apply to our 
case since it requires the condition that the kernel T(~', ~) is strictly 
positive for every o-', ~. Probably this is only a technical restriction that can 
be removed? 2~ In any case in ref. 15 the authors claim that for the 
majority rule they are able to obtain an equivalent system with T(e', ~) > 0 
by first summing out some spins in the original system. 

Our results and their strength are, in a sense, complementary to the 
ones of ref. 19. Our study will be numerical but, similarly to ref. 19, not 
only in the sense of "traditional" Monte Carlo simulations. Rather, for each 
constrained model, we will try to measure by a computer a quantity 
appearing in DSU such that if we could rigorously prove that it is strictly 
less than one, then we could deduce from some theorems strong properties 
typical of the one-phase region for arbitrarily large and even infinite 
systems. 

In ref. 19 some constrained models were analyzed in terms of a finite- 
size condition easier to satisfy than the DSU, for which the author could 
also have provided a computation based on interval arithmetics suited for 
a computer-assisted proof. This finite-size condition of ref. 18 is not 
sufficient to imply complete analyticity. In the present paper, as we said 
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before, we try to verify the DSU condition for every constrained model, 
but, as will become clear in Section 5, we can, with present machines, only 
perform a Monte Carlo calculation. For  many reasons we cannot, at the 
moment, hope to improve our calculations to get a complete control and 
possibly a computer-assisted proof. We will explain in Section 6 in what 
sense our results can be considered satisfactory. 

The DSU condition involves the calculation of the so-called 
Vasserstein distance between two Gibbs measures in a finite volume with 
boundary conditions differing only in one conditioning site. In a recent 
paper (t~ the authors, in the context of the BAT transformation, tried, for 
one particularly relevant constrained model ({mi} =0 ,  Vi), to verify the 
same DSU condition, but they were only able to provide a (numerical) 
lower bound for the concerned Vasserstein distance. The reason was that 
a lower bound [see (2.16)] in terms of the total variation distance can be 
found involving thermal averages; thus this lower bound is well adapted to 
study by Monte Carlo methods, but, on the other hand, it is only able to 
give some indications on the validity of the true condition and this since it 
appears reasonable to expect that it is a good lower estimate; strictly 
speaking, a lower bound is only useful to disprove the condition. 

In the present paper we present a Monte Carlo algorithm, inspired by 
the "surgery method" introduced by Dobrushin and Shlosman ~6" 7) that we 
call dynamical surgery. It provides an upper bound to the Vasserstein 
distance and so it goes in the correct direction toward provh~g the DSU 
condition. 

Our numerical results strongly suggest that indeed the DSU condition 
is satisfied in our present situation for all constrained models and this, as 
we said before, implies Gibbsianness of the renormalized measure. 

The paper is organized as follows: in Section 2 we define in detail our 
majority rule transformation and the constrained models. In Section 3, by 
using "conventional" Monte Carlo methods, we provide rough estimates of 
the critical temperatures of some particularly relevant constrained models. 
In Section 4 we introduce our algorithm. In Section 5 we give our main 
numerical results. In Section 6 we give the conclusions. In the Appendix we 
present the computation of the best joint representation of two measures, 
which is used in our algorithm. 

2. THE  M A J O R I T Y  RULE T R A N S F O R M A T I O N  A N D  THE 
C O N S T R A I N E D  M O D E L S  

We will consider the usual (ferromagnetic nearest neighbor interac- 
tion) 2D Ising model, with zero external field, on a finite square with 
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even side: A : = { 1  ..... 2 L } 2 = Z  2, with LEt~ .  We denote  by a ~ t 2 t : =  
{ - 1, + 1 },s a configurat ion of  the system in A and by r ~ { - 1, + 1} ~'' + a 
boundary  condition,  namely a configurat ion in 8A § defined by 

8A + := { i ~ Z 2 \ A  �9 3 j ~ A : i  a n d j  are nearest neighbors} (2.1) 

By a ~  { - 1, + 1 } and "ci ~ { - 1, + 1 } we denote  the spin variables on the 
site i E A and j E OA +. It is also convenient  to think of  ~ as an extended 
configurat ion in { - 1, + 1 } z-'\A. 

The  energy associated to a ~ t2,~ with r boundary  condit ion outside A 
and zero external magnetic  field is given by 

H ~ , ( a )  : =  - -  Y' aid/--  ~, airj V a e f 2  ~ 
( i . j )  ( i . j )  
i, j ~ .11 i ~ A, j E: (3A + 

(2.2) 

where the first sum runs over all pairs of  nearest neighbor  sites in A, while 
the second sum runs over all pairs ( i ,  j )  of  nearest  neighbor  sites such that 
i ~ A and j ~ OA +. The Gibbs measure describing the equilibrium propert ies 
of the system at the inverse tempera ture  fl is denoted by ll~. ,,(a), Va ~ s 
and is given by 

exp[  --flH~,( a) ] 
II~"da) " -  Y~,,~Q exp[  - f l H ~ ( q ) ]  Va E I2., (2.3) 

In the following four steps we give the precise definition of the 
"major i ty  rule" (on scale 2) t ransformation.  

1. Vx, y ~  7/ let B~ ...... .~ denote  the 2 x 2 block whose center has coor-  
dinates ( 2 x - 1 / 2 ,  2 y - 1 / 2 ) ;  the collection of all blocks B ..... .~, Vx, y ~ Z ,  
gives rise to a part i t ion of the lattice Z 2. If we restrict ourselves to pairs 
(x, y ) ~  {1 ..... L} 2, we get a part i t ion of  our  box A. Given a~t '2A, we 
denote  by a Jc.,., ,,~,-.., at,-.4 .,~ the four spins corresponding to the four sites of  

�9 . 4 i . the block B~ ..... .~ and we define m~ ...... .~ .=Zi=tal. ,- . . , . i ,  we suppose the four 
i Vi = 1 ..... 4, ordered in the lexicographic way. spins a~.,., ,.~, 

2. W e  define the new lattice A' by collecting the centers of  all B ..... .~ 
blocks and by rescaling the lattice spacing by a factor two; the site of  A', 
which is the center of  the block B~ ....... ), will be simply denoted by the pair  
(x, y). 

3. On each site (x, y ) ~ A '  we define the renormalized spin a'~.,...,.~ 
{ - 1, + 1} and we consider the space I2'A := { -- 1, + . l} ' r .  We define the 
kernel K: (a, a ' )  EI2.,I x t'2'.,i --+K(a, a ')E {0, 1} as follows: 
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f !  if 3 (x ,y )eA ' :m<  ...... . l~0andin< ...... .~.a'< ...... . )<0 
K(a,a'):= if 3(x, .v) e A': m(,... ,. = 0 and a I,.,.. ,. �9 at.,. . '  .,.)<0 (2.4) 

otherwise 

4. The majoriO, rule transfolvnation is the transformation which maps 
the "object" model (A, ~2.~,p;~..t(a)) onto the "image" model (A', g2'.v, 
/t'/[ ..,, (a')), where 

r O" Z , ~ ,  K(a, a')It/~,A( ) 
;~:,T..,.(a') := Z,,.+,~:, Z,,+~, K(~. q ' )~, .  ,,( ) + a Va' ~ (2'v (2.5) 

Notice that we could have used the notation Q..f, in place of g2'~., since 
here, for the majority rule transformation, contrary to other transforma- 
tions, such as BAT, the single renormalized spin variable still takes values 
in { - 1 , + 1 } .  

We finally remark that in our case, where the side of the block is 2 (an 
even number), the majority rule transformation is not naturally defined 
when the magnetization inside the block happens to be zero. In order to 
resolve the ambiguity we choose the deterministic rule of attributing to the 
renormalized spin a'  in the 2 x 2 block the value of the original spin at the 
left upper comer. 

We could have chosen the probabilistic rule of assigning to a' in the 
ambiguous cases the values __+ 1 with equal probability I/2. We do not have 
a priori any clear criterion to prefer one of the two above options. We only 
observe that the probabilistic rule gives rise to a longer computation. 

This transformation is well known in the physics literature and it has 
been widely used to investigate the properties of many spin models (see, 
e.g., ref. 32 and references therein). 

A very important role in our discussion will be played by the "con- 
strained models": given a'  ~ g-2'v, we call the constrained model corresponding 

t , r  r to a, and we denote it by ~r162 +,, the model (A, ~.,,/2/;..~.,.(a)), where 

K(a, a') It~p...,(a) (2.6) 
Iz~,..,.,.(a) :=  Y'-,,~,z+, K(q, #)/.z~r 

is a probabil i ty measure on (2 A. Due to the fact that K(a, a ' )~  {0, 1} we 
~T have that, Vai l2.4 and Va' ~(2'v, the constrained model Jl~.-' can be seen 

as the model 

~ a = exp[ --flH~,(a)] ) 
A, s ) Z,,~z, . .exp[--f lH~,0?)]  (2.7) 
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where we have introduced the constrained configuration space 

~ .,.,, := {a ~ Q..j: V(x, y ) c A ' :  

(m~ ...... . l :~0andm,  ...... .~.a' I ...... .~>0) 

or (m,.,., .,.)=0 and a~.,...,.), a' I ...... .~ > 0)} (2.8) 

In other words, we can say that the constrained model J;~.,, is a model 
defined on the original lattice A, with the same Hamiltonian H~j(a) as the 
object model, but with configuration space ~A, , "  

The microscopic states of the constrained models can be characterized 
by means of a suitable block variable. In the original Ising model there are 
24= 16 allowed configurations in each block B~.,.,,.~. We partition these 
block configurations into two disjoint classes C+ and C as follows: 

�9 Block configurations belonging to class C+ 

(2.9) 

�9 Block configurations belonging to class C 

E ]I ;]E ::]E +][ :]E ;+]E +] 
For any constrained model J /] . , ,  we allow, in the block B~.,.. ,.~, only the 
configurations in the class C~g,~,.,.,; in order to classify these block con- 
figurations we introduce the block variable Sq.,. , .~{1,  2 ..... 8}: to the 
values S~ ...... .~= 1 ..... 8 there correspond, respectively, the eight block con- 
figurations in (2.9) if a'~ ...... ~= + 1, the eight block configurations in (2.10) 
i f a '  c ...... . ~ = - 1 .  

Warning. Here and in what follows we use the (nonconventional) 
expression block variable referring to the variable S~.,...,.~ taking values in the 
set { 1, 2 ..... 8}; the spin variables a'~ ...... .~, defined on the renormalized lattice 
A' and taking values in { - 1 ,  + 1 }, will be sometimes called renormalized 
variables. 

, r  Obviously, given any constrained model J/~. ~,, one and only one con- 
figuration S ~ . x ,  := { 1, 2 ..... 8} "f' can be associated to any g~s I.~,, and 
vice versa. Hence, each state of the model J;~,,, can be represented by a 
collection S ~ ~1,  of block variables S~ ...... .), but we recall that the "meaning" 
(in terms of the original spin variables) of each block variable S~.,. ,.~ 
depends on the sign of a'~.,.. ,.~. 
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Due to the bijection between g2..~.,., and ~.v the Hamiltonian H;,(a) 
of the model ._f~r can be thought of, for any a e f 2  c,.,  as a function 
Hit(. (S) of the block-variables configuration S e D  v; here by r' we r r '  

mean a configuration of the renorraalized variables in OA' +, that is, 
r' ef2;,.v. : = { - 1 ,  +1} ~ where 

OA '+ := { (x , y ) e7 / z :O<. . . x , y<~ .L+l , x#y , ( x , y ) r  '} (2.11) 

By ,Y-e~,,.,,, := {1 ..... 8} ~ we mean the boundary condition expressed 
in terms of the block variables in the set OA '+. Notice that given the 
original r and r', in general .Y- is not uniquely determined. 

We remark that a block variable in B~ ...... .~, for (x, y)e  A 'w  OA'+, is 
completely "meaningless" if the corresponding renormalized variable has 
not been specified. Finally, one can say that the constrained model (2.7) is 
equivalent to the model defined on the lattice A' with configuration space 
s and equilibrium measure given by 

exp[ H ~ -/~ :,..~ vseD, .  (2.12) 
/~/" " " ' "  e(S) := Z r ~ , ,  exp[ -flH~,~,,  , (  Y)] 

Now we study the above-defined constrained models by means of the 
finite-size Dobrushin-Shlosman uniqueness condition (DSU); to introduce 
the DSU, we need some definitions. 

Let us consider two measures/~ j and/.tz on a finite set Y; let p(., - ) be 
a metric on Y and denote by ~V(Ct~,/C, ) the set of joint representations of 
lt~ and/~2, namely the set of all measures I~ on the Cartesian product Yx Y 
such that 

/~(),, y ' )=p~(B) ,  ~ p(y.  y')=tt_,(B) VBc  Y 
y e B .  ,1" ~ )" .v e ) ' ,  ) ' "  e B 

We set 

1 Var(/~,,tt_,) :=5 ~ I~d)')-/~a(y)Y 
.1"~ }" 

and, given a metric p on Y, 

(2.13) 

@/,(/~,,lt_,) := inf ~ p(y, y') . /~(y, y') (2.14) 
I t  ~ .2~'~[111 . It2 ) ) .  ) . ,  ~ } ,  

Var(lt ~,/~2) and .@~,(ll ~,/~_,) are respectively called the total variation 
distance and the Vassersteh~ distance with respect to p between the two 
measures IL~ and/t2.  
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Let us consider a spin system on Z a with a single spin space 5 P and 
range-one interaction (generalization to arbitrary finite range is trivial); we 
denote by r/i the spin variable associated to the site iEZ d. 

For any finite set V c Z  a we denote by 8V + the set of points outside 
V whose spins interact with the spins inside V and by r/v E 0 ~ v a spin con- 
figuration on V. Given the boundary condition ( ~ 5  ~v', we denote by p~, 
the Gibbs measure in V with boundary conditions ~ outside V. Given a 
metric p on ~9 ~ we associate to it a metric p v on 5~ v defined as follows: 

p,.(,7,-, ,f,-):= ~ p(,li, ,f,), 
i ~  V 

Vv/r, q'f-~ ~ I  

We say that condition DSU,( V, 5) (the Dobrushin-Shlosman unique- 
ness condition in V with respect to the metric p and uniqueness parameter 
8) is satisfied if and only if 3 a finite set V c Z  a and 3 f i>0  such that 
VjeOV +, 3~j>0,  such that for any couple of boundary conditions 
~, ~, ~ j , r .  with ~ =  ~'i, Vi~j ,  one has 

~,,, (/~.,/~'.) ~< ~,p((j, ~) 

and 

oc/~ IVl 
]ECTI "+ 

Let us consider the metric on the single site variable given by 

10 iff qCr/' 
/}(q' q' ) : = otherwise (2.15 ) 

In this case condition DSU,,( V, 8) will be simply denoted by DSU( V, 6). 
We observe that in this case 

_9,,(p~-,p~;)~> E ~ ) (P~ ,P~ ' )=  E Var(p , ,p~ ' )  
i E  l" i ~  J" 

(2.16) 

as easily tbllows from (2.14) and Proposition A1 in the Appendix. 
In order to describe Dobrushin-Shlosman's results based on the 

DSUI,(V, fi) condition we need some more definitions. We introduce two 
kinds of mixing conditions, of a priori different strength, for Gibbs 
measures in a finite volume A. The first are weak mixing (WM) conditions 
saying that the influence of a local change in conditioning spins decays 
exponentially fast with the distance from the boundary 0A; the second 
kind, strong mixing (SM) conditions, correspond to the case where the 
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influence of a change of a conditioning spin x decays exponentially fast 
with the distance from x. We refer to refs. 26 and 27 for a critical discussion 
of these different notions. It has been shown with some examples ~36~ that it 
may happen that WM is satisfied whereas the corresponding SM is not. 
Since we are speaking of finite-volume mixing condition, we have to make 
explicit in the notation the constants referring to the concerned exponential 
decay. Of course a particularly interesting case is when we have these 
mixing conditions in a class of arbitrarily large volumes A with uniform 
constants. We refer again to refs. 26 and 27 for a discussion of these points. 
It turns out that a crucial aspect is the class of volumes that we are con- 
sidering. In particular in the Dobrushin-Shlosman theory of complete 
analyticity~7, st arbitrary shapes were considered, whereas in the approach 
developed in refs. 33, 34, and 27 only sufficiently regular domains were 
involved. 

We say that a Gibbs measure p:, on 12~ satisfies a strong mi.\'ing 
condition with constants C, y if for every subset A c A 

sup Var(p~,.~,,p~',i~,,)<<. Ce -~'a~"''" (2.171 
r .  l-( Vl E ~ . 1 ,  

where r ~-'~.,. = r,. for x ~ y  and p.~,. ,f is the p.~.,-probability distribution of the 
spins in A. We denote this condition by SM(A, C, y). 

We say that a Gibbs measure p~, satisfies a weak mixing condition 
with constants C, y if for every subset A c A 

sup Var(p~,.,,,p~i.A)<,C ~ exp(--y [x - -y [ )  (2.18) 
r ,  r '  ~ . ( 2 r  c A'E / I . . l ' ~ , I  + 

We denote this condition by WM(A, C, y). 

T h e o r e m  DS. (6) Let DSU( V, ~) be satisfied for some V and fi < 1; 
then q c >  0, y > 0 such that condition WM(A, C, y) holds for eveIT A. 

T h e o r e m  MOS.  (3~) Let the dimension of the lattice be d = 2 .  If 
there exist positive constants C and 7' such that the Gibbs measure p~, 
satisfies the weak mixing condition WM(A, C, y) for any finite A c 7J, then 
there exist positive constants C' and y' such that the Gibbs measure p.q 
satisfies the strong mixing condition SM(A, C', y') for any sufficiently 
regular domain A and in particular for any square Ac with arbitrary side L. 

Here "sufficiently regular" means "multiple of a sufficiently large 
square.,,i 2 6  } 

Remark. Actually the conclusion of the above theorem remains true 
even if we assume the weak mixing not for all finite subsets of 7/, but only 
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for all subsets of a square At,, provided that Lo is large enough (depending 
of course on the constants C and ), and on the range of the interaction). 

Then our strategy to show Gibbsianness of the renormalized measure 
arising from the application of the majority rule transformation is based on 
the following chain of implications. 

We try to verify DSU( V, (5) for some given V and (5< 1 for all con- 
strained models. Then if we could apply Theorem DS, we would get 
WM(A, C, ~,), VA, with the same constants C, ~, for all A and for all con- 
strained models. Subsequently, if we could apply Theorem MOS (by 
exploiting the two-dimensionality), we would get SM(A, C', ~,') for all 
sufficiently regular domains A with the same constants C', ~,' for all these 
A and for all constrained models. This would directly imply the validity of 
the conclusions of Theorem 1.1 in ref. 15; indeed it immediately follows 
from the proof of Theorem 1.1 in ref. 15 that the authors could have 
obtained exactly the same result by only assuming their strong mixing 
hypothesis (which they express in an equivalent form, valid for Ising-like 
systems, as exponential decay of two-point spin-spin truncated correla- 
tions) uniformly in the constrained model and in the boundary conditions 
only Jbr all suJficiently regular (in the above-specified sense) domains 
instead of jbr all domains. 

Strictly speaking, Theorems DS and MOS apply to translationally 
invariant situations and our constrained models are not, in general, trans- 
lationally invariant. However, it is easy to convince oneself that both 
theorems extend in a straightforward way to the non-translationally 
invariant case provided we assume spatial uniformity of the bounds 
appearing in the hypotheses. In other words we have that it is sufficient to 
assume the validity, for a given constrained model, of DSU( V, c5) for some 
V and some (5 < 1 uniJbrmO, in the location of Vto  imply SM (for arbitrary 
sufficiently regular volumes with uniform constants) for the same model. 
But if we are able to show that DSU(V, (5) is verified for a given V and 
(5 < I for all constrained models (namely for all ~' e g2 j.,) this implies, at the 
same time (using extended versions of Theorems DS and MOS) the 
validity of SM (for arbitrary sufficiently regular volumes with uniform con- 
stants) for all constrained models and then, via Theorem 1.1 in ref. 15, 
Gibbsianness of the renormalized measure. 

Now we start applying the above strategy. We first introduce some 
specific definitions. Let us consider a squared volume V' c A' with side l and 
the corresponding subset V, with side 2/, of the original lattice A. Let us 
consider the metric on the single block-variable space { 1 ..... 8} defined by 

{~ iff ccr V~, c(E { 1 ..... 8} (2.19) 
15(~, ~') := otherwise 
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and the metric on ~ v, given by 

p,..(S,S'):= ~. fi(S, ...... .,,S'c.,...,.i), VS, S'e.Ov, (2.20) 
( . , : ,  y )  �9 I " '  

Now, given a '  ~g2' v, and r '  e s .. . .  we denote by [ J ] ,  .~],.,..,., a pair 
of boundary conditions .~ ,  .Y'_, ~ ~ev.* such that 

~,,..,.., = ~, , . . , . ,  V(x',y')~ov'+\{(x,y)} 

and we define 

~t~el ' ~ ' l ,  / /-214 ,.  *1 . ~ /)-I "]-' 
fJ. i" . . ' .  ,' = "~,, .(/I/t. v ' . . ' .  ~', ~/ t . -v ' . . ' .  ~') - -  

10V,+l  

IV'l  

- , , ,  . . , -  /~. i-,..,. ~,, II /~.-v,, .,. ~, ) -[ (2.21) 

where 

"/-~ r '  ) ~,,, .  (~/~'1 ... ,.. ,., I~/,.-i.,. ~.. 

is the Vasserstein distance between two equilibrium measures for the 
constrained model corresponding to a' ,  r '  which have been obtained by 
modifying the boundary conditions just in one site in 0 V' +. We set 

d/~. ~.,.,,, := sup sup .r [.7,...Tq,,. ,, (2.22) 'el/I, I",  e~' r' 
( .v.  y )  �9 r " ' ~  I 7 1 . . ~ - 2 ] , ~ .  ~, 

Heuristically we can say that ~ .  v,.., measures how much the equilibrium 
of the constrained model can at most be modified if one changes the 
boundary condition in one site, uniformly in the site and in the boundary 
conditions; it can be called a u n i q u e n e s s  p a r a m e t e r  (in the sense of the DSU 
condition) in V' for the constrained model characterized by a '  at inverse 
temperature ft. 

It is a trivial consequence of the definitions that if ~ .  w.., < 1, then the 
Dobrushin-Shlosman uniqueness condition D S U ( V ' , 6 )  is satisfied for 
some fi < 1 for the constrained model corresponding to a ' ,  r'. The main aim 
of this paper is to build up a Monte Carlo algorithm in order to estimate 
~ .  f-,.., and to show that at f l = f l , :  =~log(1  + v / 2 )  (the critical inverse 
temperature of the standard 2D Ising model) there exists a volume V' such 
that for all possible constrained models, d~s. i-,.., < 1, namely 

~/~. i" :-- sup ~ .  w.,,' < I (2.23) 
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3. ROUGH ESTIMATE OF CRITICAL TEMPERATURES 

In the following sections we will see that two constrained models (the 
chessboard and the striped model, see definitions below) are particularly 
"dangerous," that is, they satisfy the DSU condition for volumes larger 
than those needed by the other constrained models. 

The chessboard and the striped models are the constrained models 
corresponding, respectively, to the two configurations cr .90 ~ (2' defined as 
follows: 

1 i fx  + y is even 

r := - 1 otherwise 

1 if x is even 

'~""-"~ := - 1 otherwise 

(3.1) 

These two configurations are respectively depicted in Figs. lb and lc. 
We study the equilibrium properties of the chessboard and the striped 

model by means of a standard Monte Carlo procedure based on a suitable 
heat bath dynamics. This dynamics is generally used to compute mean 
values (with respect to the equilibrium Gibbs measure) of some observables 
as time averages; this mean value will be denoted by ( .  }. 

This "conventional Monte Carlo" analysis is preliminary to the main 
numerical results of this paper. Here we are not interested in a large-scale 
simulation, nor in a precise estimate of critical points and exponents; we 
just want to have strong evidence of the fact that the critical inverse tem- 
perature of these two dangerous models is, in both cases, much greater 
than fl,.. 

By making use of the notation introduced in Section 2 (relative to the 
constrained models J/r we describe now the discrete-time heat bath 
dynamics used in our Monte  Carlo study. It is given by the Markov chain 
defined below: 

1. We consider the constrained model corresponding to a '~g2',  c and 
we assume periodic boundary conditions; we denote it by ~ . , ,  and its 
Hamiltonian by H c,~,(S) with S E ~  ,,. 

2. At each step we perform a complete updating of all S c ...... .~ block 
variables following the lexicographic order; in the remainder of this section 
this will be called a Monte Carlo sweep. 

3. For  any (x, y)EA'  the new value S'  c ...... .~ of the block variable 
S~ ...... .~ is chosen at random according to the Gibbs measure in B~ ...... ,~ with 
boundary condition 
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Fig. 1. E x a m p l e s  o f  c o n f i g u r a t i o n s  o f  r e n o r m a l i z e d  v a r i a b l e s  c o r r e s p o n d i n g  to  c o n s t r a i n e d  

m o d e l s  w h i c h  are  p a r t i c u l a r l y  i m p o r t a n t  in o u r  c a l c u l a t i o n s ,  

Hence,  if we  denote  by  H , , ( S ' ~ . , .  ,. IS'/.,..yfl the contr ibut ion  o f  the b l o c k  
B~ ...... .~ to the energy o f  the system,  the transit ion probabi l i ty  is g iven by  

e x p [ - f l H , , , ( S '  c ..... . IS,j,-. ,.fl] 
P/j .~ , (S ..... .~ --' S'c ...... ~) :=  8 ,, c 

- Zs;. . , . ,= ] e x p [ - f l H , , , ( S ~ . , . .  ,. [S~,..y~)] 
(3.2) 

We remark that in our  n o t a t i o n  there is no  explicit  d e p e n d e n c e  of  the 
b o u n d a r y  cond i t ions  ( . ~ - - r ' ) ,  because  they  are s u p p o s e d  to be periodic.  
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In order to establish the value of the inverse temperature fl for which 
the two models 43. ,~, and .Y/~..,r are critical, we have computed the specific 
heat defined in terms of the equilibrium energy fluctuations: 

~ 2  

C.,.~,, :=4L  2 ( (  H~,, ~,) - - (  H,,, ~,) 2) Va' =cg, ~ (3.3) 

Both models have been studied in the case L = 64, which means that 
we have considered the two models defined on a square lattice containing 
1282 original sites; we have considered smaller values of L as well, in order 
to check the finite-size behavior. In the case of model .~. ,r, we have performed 
105 full sweeps of our Monte Carlo algorithm for each value of fl, while in 
the case of model .Y/j..~ 1.5 x 105 sweeps have been performed. 

Figures 2 and 3 plot the specific heat as a function of the inverse tem- 
perature fl in the case of models d/j, ,~ and d/i, ,/,, respectively; these results 
have been obtained by analyzing the Monte Carlo data by means of the 
"jackknife" procedure. From the pictures it is clear that both inverse criti- 
cal temperatures fl'f and fl~'.~ are significantly greater than the Ising inverse 
critical temperature tic. Our rough estimates are 

fill = 1 .60+0.05 and & ~ > - 2 2  (3.4) 
- -  k ~ c  ~ * -  . 

Notice that from the results depicted in Fig. 3 we cannot even exclude that 
p / =  ~ .  

1.8 

1.6 

1.4 

1.2 

:~  0 . 8  

f),6 

0.4 

0 . 2  

1.2 1.3 1.4 1.5 1.6 I.~ 

i 

1.7 

Fig. 2. Specific heat for the chessboard model defined in (3.1)  as  a function of the inverse 
temperature ft. 
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1.2 1.4 1.6 1.8 2 2.2 

Fig. 3. Specific heat for the striped model defined in (3.1) as a function of the inverse 
temperature ft. 

4. THE A L G O R I T H M  

Let us consider the volume V' introduced in Section 2, a' ~g2',,,, 
r' ~Q~,  ..... a pair of  boundary conditions [~-~1, ,Y~2]~.,.. ,~), and the two equi- 

~-' and .r, . Let us denote by librium measures p/~. , ~ , , , ,  P/~.-.~'..,. e 

j ( ( - [ /71,  .~ ]c , .  ,.~ 
f l , I " .~ ' . r "  

the set of joint representations of p/~. A'.,'. ~' and p/~.-~,. ,. ,,; we want to give 
a numerical estimate of the quantity 

f l , J " ,  o". r '  

defined in (2.21). 
A similar problem has been studied in ref. 1, where by means of a 

standard heat bath dynamics, a lower bound to 

/J, I " ,  rx'. r '  

has been calculated; now we build up a Monte Carlo algorithm in order to 
obtain a numerical estimate of an upper bound to the same quantity. 
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First we heuristically describe the idea on which the algorithm is 
based. In order to calculate exactly the Vasserstein distance, one should 
know a joint probability measure 

.';U [ '&" .-z; ] ,  ,. ,., 
Q * (  . , .  ) - -./,. , , - , . , ,  , ,  

on the space ~ v ,  x ~ v' such that 

(1l/)"1 /)-~ 
I ; l '  r-[J, I'". er'. r'' f l  fl.-l]",a', r ') = Z Q*(S el', S c21) p v,(S ~l~, S ~2J) (4.1) 

that is, a joint probability measure "optimizing" the sum in (2.14); this is 
a very hard task. On the other hand, it is possible to calculate the 
Vasserstein distance between two equilibrium measures, relative to two dif- 
ferent local boundary conditions, of a single block variable; indeed, in this 
case, from the definitions given in Section 2, it turns out that the distance 
between two configurations is ~(cq ~ ' ) =  I -6~.~,, W, ~ '~ { 1 ..... 8} [see 
(2.19)] and so the Vasserstein distance coincides with the total variation 
distance (see ref. 4, p. 472). In this case it is also possible to calculate the 
"optimizing" joint distribution measure. Hence the idea is to build up a 
dynamics describing the evolution of two coupled systems, with different 
boundary conditions, such that at each step the two copies are updated in 
a single block according to the "local optimizing" joint distribution law. 

The idea of a coupling of two stochastic dynamics turned out to be 
very useful in the theory of interacting particle systems (see ref. 22, p. 64) 
and also for the study of probabilistic cellular automata. ~7' 25 

Now we give the detailed definition of the dynamics. 

1. Given a'eg2'v,, r '~f2~v,+, and a pair of boundary conditions 
[ ~ ,  Y2] c,-..,,~, we want to describe the evolution of the pair of copies of the 
constrained model corresponding to a' es v, and r ' e  { -  1, + 1 }or.+ with 
boundary conditions respectively given by ~ and ~--2. 

2. We consider the Markov chain X,: =(S~(t),S~2~(t)), VtE/~, 
where S*~(t) and S~2~(t) are the configurations of the two copies of the 
system at the time t. The two processes S~t~(t) and SC2~(t) are called 
marginal chains, while X, is called the joint cha#,. 

3. At each instant t one and only one site (x, y ) ~  V' is taken into 
account; all sites (x, y ) e  V' are visited in lexicographic order; hence in an 
interval of time At = [ V'I sites (x, y) e V' are considered: this is called a 
sweep (or, sometimes, fidl sweep) of the dynamics. 
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4. Let us consider the site (x, y) which is updated at the time t; we 
introduce the following notation: 

q&r.g•i)  S~i~ L-c,-. ,.~ I w,,{~.,...,,}(t-- 1 ) ] ,  i = 1 , 2  

is the equilibrium Gibbs probability measure for the block variable in 
(x, y) condit ioned to the values of the block variables in V' \{(x ,  y)} at 
time t -  1; we denote by Jr ,.~(t) the set of joint representations of 

q.r  ?1 I } .~-,r t " ( 2 l  �9 " v'\{~ ........ ~ l ( t -  1 ) ]  and  I S~j-'.)\{ 1 ) ]  (4.2) q - L ~  ..... . I.,..,.~}(t-- 

and, finally, by 

q*~-"~--'[S~c~,.l.,.,, S~.I,.,IS',~.'\I , ...... . ,}{t-  1)), S',~,'\{, ...... . ,~(t-  1)] (4.3) 

the joint representation in a~.q.,...,.~(t) such that  

~ /,,.'7,r c,l~ Icll~ -.'7,[ S121 SC2~ t , _  1)]) ~v Lo,-..,.~l~,r.\{ ..... ,}(t--1)],q - ,.,..,. I ,"\l~.,-.,.,}," 

8 

= Z s,,'-,.?,.,) 
s',','. ,.,. s',-','. ,., =, 

xq  * ' ' '  ''~'r'~" I ~ L -  .,-. ,. , -'g~2~.,-. ,. i SO!.)\{ c ...... .~l(t_ 1)), S~_,~w\{~.,.. , . ~ I ( t - l )  ] 

(4.4) 

The joint representation (4.3) can be exactly calculated as shown in the 
Appendix. All probability measures introduced above depend on fl, V', a ' ,  
and r'; we drop explicit dependence to simplify the notation. Notice that, 
of course, the q'3'[.  I" ] are stationary. The dependence on t - 1 in the con- 
ditioning spins is made explicit only to clarify the updating rule from the 
configuration at time t - 1  to the one at time t. 

5. Given t >/1 and the corresponding site (x, y) ~ V', the configura- 
tions S ~ ( t )  and S~2~(t) are obtained by choosing the pair (S c ...... ,(t),  

(2) S~.,. y~(t)) at random according to the joint probabili ty measure (4.3) and 
So.,... ,., (t) _ v . , . , . c " l  - . ~ '  , . . ( t -  1), W = l , 2  and V ( x ' , y ' ) ~ V \ { ( x , y ) } :  " 

In analogy with the terminology used in ref. 6, we call this dynamics 
dynamical surgery; our dynamics is strictly related to the basic (or 
Vasserste#7) coupling used in the theory of stochastic systems of interacting 
particles (see ref. 22, p. 124). Now we discuss some easy properties of this 
dynamics. 
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1. Given t e N, it is immediate to see that if 

t - H I )  t - -  (2 )  
- ) -  S .,., ,., ( t -  o ~.,...,.,( 1 1) 

then 

V(x', y') nearest neighbors of (x, y) 

S (  i ) (2 )  ~.,...,.~(t) = S ..... . (t) (4.5) 

In other words this means that in this case the joint representation (4.3) 
lies on the diagonal. 

2. The evolution of the two marginal chains SIt)(t) and S~Z~(t) is 
described by a standard heat bath dynamics; this is a consequence of the 
fact that the probability (4.3) is a joint representation of the single-site 
probability distributions (4.2), which are the Gibbs measures of a single 
block variable with boundary conditions given, respectively, by 

(9-]1, S~.!.)\I c . . . . . .  .~l(t-  1)) and (~_,, Sl~?\lc.,.. , . , l ( t -  1)) 

Hence the equilibrium distributions for the two marginal chains SI]~(t) and 
S~2~(t) are the Gibbs measures with boundary conditions given, respec- 
tively, by ~ and ~2- 

3. Given t ~ N, given 

, . ~  r ['~7t" .~'_q~ ,..,.~ 
Q(" ") ~ ~"/~..,,'. ~'. ,' 

if the stochastic variable X, = (S c~ ~(t), SI2~(t)) is such that 

P(SCtJ ( t )=S ,S~2~( t )=S ' )=Q(S ,S  ') VS, S' e ~ v ,  

that is, it is distributed according to the joint probability measure Q(. , . ) ,  
then it is easy to prove that X,+~ is also distributed according to an 
element of 

fl, /1', tT'. r '  

From the fact that the joint chain X, is an ergodic, aperiodic chain 
with a finite state space and from properties 2 and 3, it immediately follows 
that there exists a unique equilibrium distribution for the Markov chain 
3(,; it is a joint probability measure 

. ) U  [ : r j . . ~  It.,..,', 
O ( " ' ) - - / , . . . , ' . o ' . , '  

822 86.5-6-16 
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This means that, provided the two marginal chains have thermalized, that 
is, they are almost described by the corresponding Gibbs measures, the 
joint chain, after a long enough time, is almost characterized by the dis- 
tribution Q( ' , ' ) ,  which is a joint representation of the Gibbs measures 

~-I , ~  " 11/r , . .  , ( S )  and ll/~- r , . (S) .  Hence, jf one needs to calculate the "phase 
average" of an observabl~e depending on S ~ j~ and S ~2~ with the joint prob- 
ability Q, one can perform a sufficiently tong Monte Carlo run with the 
dynamical surgery and calculate the "time average" of the same observable. 

If it were true that Q =  Q*, then we could perform a Monte Carlo 
calculation of the uniqueness parameter 

.~ [.'Y-I, .s ~t 
fl, V' .  ~". r' 

but in general Q-r Q* and moreover we cannot say anything on how close 
~) is to Q*. Anyway, we can use the joint representation O to calculate an 
"upper" estimator of the uniqueness parameter; we set 

4i[.,i,,,~1,,.,.. 4 I L "/,. ,". ~'. ~' : = 7 7  p,..(s' t '(s.lU'l),S"-'(s.im'l)) 
.~.= I 

(4.6) 

where I is the number of sweeps performed during the Monte Carlo run. 
It is clear that 

,1/[ .')h..~-_, ] , .  ,., 
"" /I. |".  r r' 

is a numerical upper bound to 

~ [  u-t. ~-z]~,.,p 
/L V'_~'. r' 

The same Monte Carlo run cad be used to estimate a "lower" bound 
to the uniqueness parameter as in ref. 1. Indeed, we define the quantities 

1 I 
"''"'/V(i) "(Ot) :~--  7 Z 6'z .s",'~.. ,.,,.','-IVy, V i = l , 2  VCv, y ) ~  V '  Vo~,~{l ..... 8} 

(4.7) 

and we set 

4 1 ~,1 7,.-~ It.,. ,,, 
/ '-'"-"'-" : = 7  2 ~ ~ ,.N"' , . , (~)-  N ' - " . , . ~ ( c c ) l _ , . , . .  . .  ,.,. (4.8) 

See ref. 1 for more details. 
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5. UPPER A N D  LOWER BOUNDS:  N U M E R I C A L  RESULTS 

In Section 4 we developed a Monte Carlo algorithm in order to 
evaluate an upper and a lower bound on 

~.[ .~h..~]~,.  ,., 
/L I" ' .  a ' .  r '  

and we denoted these two quantities respectively by 

,~?/[.,-,..~-: ],.,. ,., and ygO t.r 3,.,. ,., 
"'" / / .  I " . a ' .  r '  ~ [L V ' . a ' .  r '  

This algorithm cannot be used to give a direct evaluation of an upper 
bound to ~ .  r.; indeed, in order to calculate an upper bound to g/~. v. we 
should consider all possible constrained models and all possible pairs of 
boundary conditions [J-'~, ff2]c.,-.,.~ (see the notation introduced in Sec- 
tion 2), that is, we should perform 3 - I .  2/2+a/+~ runs of our Monte Carlo; 
one immediately realizes that this is an almost impossible task since it 
would give rise to an enormous computat ion even in the case of  small 
volumes (l = 2, 3 ). 

Indeed, two boundary conditions can differ in one site (x, y)Ec3V' + in 
six ways: if one considers the block B~ ...... .~ with (x, y ) ~  aV'  + and gives the 
block variable S~ ...... . ,  then only two of the original spins ai.,. .,., those adja- 
cent from the exterior to the lattice V, influence the equilibrium properties of 
the system; hence the possible ways in which two boundaries may differ are 

+ +  

+ +  

+ +  

+ - -  

+ - -  

- - +  

- +  

- +  (5.1) 

where we have depicted the two couples of original spins, belonging to the 
block B~ ...... .~ and adjacent from the exterior to V, that one can have when one 
considers two boundary conditions differing just in (x, y). Hence, one can 
easily convince oneself that the total number of  pairs of boundary conditions 
[ 9-~t, Y2]c.,-. ,:~ is given by 6- 2 2c4/ i~. Finally, notice that given l, there exist 2 I-" 
possible constrained models and that the site (x, y) can be chosen in 4l dif- 
ferent ways; it is immediate to see that considering all possible constrained 
models and all possible pairs of  boundary conditions amounts to examining 
3 �9 l. 2 t" § 2/§ ~ different situations. This number could be reduced by taking 
into account various symmetries; however, one would still have, for inter- 
esting values of/ ,  an excessively large computat ion to perform. 
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Table I. 

Cirillo and Olivieri 

Values of qlp.  v.,  Aal le.  v ' ,  ---~p. v . ,  a n d  ~Lt 'p .  v'  
Obtained at I = 2 ,  3, 4, 8, 16" 

: ,a,~,. ,,. .s,~:/,. ,... g , .  ,.. ,a._v,,,., .... 

2 1.452 0.0074 1.34 - 2.50 
3 I. 122 0.0071 0.90 + 2.05 
4 0.877 0.0046 0.73 + 0.32 
8 0.436 0.0026 0.30 + 0.74 

16 0.207 0.0016 0.16 +0.04 

"The meaning of #lip. r' and J~/~. ,.. is explained in the Remark in 
Section 5. 

Hence we are forced to consider just some of  the possible constrained 
models and some of  the possible boundary  conditions,  that  is, we are 
forced to perform a sort o f  "statistics" aimed at singling out  the worst  
possible case. 

Let us denote  by q//~. r '  the highest value obtained for 

o/l  C.~i. & 1 , , .  ,. 
" " f t .  I " ,  # ,  r '  

and by s v, the corresponding estimate of  

..s [ .Tt..~-' ]t.,, .H 
fl, V ' ,  a'. r' 

First we made a preliminary evaluation of  our  upper  and lower 
estimators for different values o f / ,  by choosing completely at r andom a 
certain number  o f  constrained models and some of  all possible pairs o f  
boundary  conditions. 

We describe now how the statistics was performed in all cases; our  
numerical  results are summarized in Table I. 

�9 1= 1: In this case the volume V' contains a single site, that  is, V ' =  
{(1, 1 )}. The dynamics  defined in Section 4 is based on the local updat ing  
of  a single block variable; this updat ing is worked out  according to the 
probabil i ty distribution (4.3). Hence, in the case 1= 1 the est imator  (2.23) 
is exactly calculated as follows: 

/ 
C/s, v ' =  4 ( sup sup sup 

\ a ' ~ O ] .  ( x .  r ~ O V  ' +  [ . ~ ' b 3 " 2 ] ~ . ~ . , ~  

x y. ~ * ~ , . . ' ~ , r ~ , ~  SI2, ]) 
- L ~ ( I .  I P  ( I .  

S(ll ~;12J ~: 
�9 it, n . -  ~1.1~ { 1 . . . . . 8 }  

II) d21 
S I I .  Ii :/~ "~ [I. I I 
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On the other hand, since in this case the Vasserstein distance coincides 
with the total variation distance (see Appendix), we can compute the same 
quantity by means of the expression (2.13). We get 

r v,=2.119 

This result means that in this case there exists at least one constrained 
model (we remark that there are only two constrained models, respectively 
corresponding to a't~. I~ = + 1 and a'~. ~ = 1 ) and one pair of boundary 
conditions [~--~, ~---,]c,..y~ such that the Dobrushin-Shlosman condition is 
not fulfilled. Hence, the volume V' with l = 1 is not "large enough" for our 
purposes. 

In both cases a'l~.,~= +1 and a'~. ~ = - 1  and for many pairs of 
boundary conditions [ ~ ,  J,]~.,...,.~ we have evaluated the estimator (2.21) 
by means of the Monte Carlo algorithm as well; in this way we checked 
our computational procedure to get the best joint representation (4.3). The 
results that we obtained differ from the exact values by 1-2%; this shows 
that, at least in the case l =  1, our Monte Carlo procedure is very efficient. 

�9 l =  2: We considered all possible constrained models and for each 
model considered 200 different pairs of boundary conditions. By performing 
1.3.106 full sweeps of our Monte Carlo, we obtained the results in Table I, 
these results show that there exist at least one constrained model a', r' and 
one pair of boundary conditions [ ~ ,  J'-2]~.,-..,.~ such that 

[1. J" ,  t~', r '  - -  

This means that there exists a constrained model, the one corresponding to 
a', r', which does not fulfill the Dobrushin-Shlosman uniqueness condition 
DSU( V', fi) with d < 1. 

�9 l =  3: We considered all possible constrained models and for each 
model we considered 100 different pairs of boundary conditions. The 
results in Table I refer to a run of 1.3.106 sweeps. In this case there exists 
a particular constrained model a', r '  and a pair of boundary conditions 
[9"~1, .W;, ]c.,...,,I such that 

,1/.r ,., > 1 and ~b:,...7:], ,. ,., " #. v,.,,, r, #. J".,'. r' <1  

that is, the upper bound is "too large," while the lower bound is "too low." 
Hence, for this model we can neither say that the Dobrushin-Shlosman 
condition is fulfilled nor the opposite; we must consider larger volumes. 
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�9 1=4: We have considered 50 constrained models and 60 pairs of 
boundary conditions; the results in Table I were obtained by performing 
1.3 �9 10 ~' full sweeps of the algorithm described in Section 4. 

�9 l =  8: We performed the same statistics as in the case / = 4 ,  but in 
this case it is obviously less significant, because the global number of 
possible choices is much greater. We performed 1.3 �9 10 r' full sweeps of our 
Monte Carlo. 

�9 l =  16: We considered 30 constrained models and 30 pairs of bound- 
ary conditions; we had to reduce the number of runs, because of their 
length. 

Remark. The error A4//~ j., in Table I is the usual statistical error, 
that is, the standard deviation on the measure of the average '~?11~. v, of the 
Monte Carlo results. On the other hand, the best estimate s v,, and the 
error z]LP/,. ~., have been obtained by fitting the Monte Carlo results with 
the equation 

where I is the number of full sweeps of the run ~l~ and A ~ .  ,., = J ~ .  ,-,/x/Q. 
The results in Table I suggest that in the case / = 4  all constrained 

models satisfy the Dobrushin-Shlosman condition, that is, the volume V' 
with / = 4  is "large enough" for our purposes. But, strictly speaking, 
we cannot be sure about that, because we had to perform a statistics on 
the constrained models and on the boundary conditions; that is, there 
could exist a particular "bad" constrained model not satisfying the 
Dobrushin-Shlosman condition. Then we considered values of l larger than 
4 and showed (see Table I) that for 1=8,  16 the value of41l~" ~.. is so small 
and the effect of the change of conditioning spin is so localized (as we will 
explain) as to lead one to the conclusion that the existence of such a bad 
model can reasonably be excluded. 

Our first observation refers to how the quantity 1/4~'~1~" w ,  namely the 
average distance of the two copies of the system which evolve following the 
joint Monte Carlo dynamics, behaves as a function of I. Indeed, it grows 
from 0.530 to 0.8415 when one increases I from 1 to 3, and then it remains 
approximately constant when one increases the value of 1; this is what one 
expects heuristically. 

In all the above-described cases the "statistics" has been performed by 
choosing completely at random the constrained models and the boundary 
conditions; in all cases we have found that the most "dangerous" models, 
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that is, the constrained models with highest values of our upper estimator, 
are the striped and the chessboard ones. 

In order to strengthen the claim that inequality (2.23) is satisfied 
provided one chooses l large enough, in the case l =  6 we have performed 
a "rational" statistics, that is, we have chosen the constrained models and 
the boundary conditions following reasonable criteria. We chose l =  6 for 
our final calculation, because the results listed in Table I suggest that in 
this case condition (2.23) should be fulfilled, while, on the other hand, a 
full sweep of the Monte Carlo algorithm takes an acceptable CPU time so 
that we can perform a reasonably wide statistics. 

The algorithm introduced in Section 4 describes the "coupled evolu- 
tion" of two copies of the same model, characterized by two different 
boundary conditions; we recall that at each instant of time t one and only 
one site (x, y ) e  V' is updated and we observe that the property (4.5) 
suggests that the differences between the two copies of the model have a 
unique origin: the difference of the two boundary conditions in 
(.~, r  '+ 

Due to this fact it seems resonable to assume that during the evolution 
the total number 

p,.,(t) "= ~' (I --CSs,,,,.,.)(,).s('-,,.,(,)) 
Ix ,  .I')~ I"  

of disagreements between the two copies of the system is almost always 
equal to zero and sometimes these disagreements propagate in V' starting 
from the site (.~, .9) in 0V '+. Now, if one recalls that the average distance 
between the two copies is approximately equal to 0.87 for l/>4, it looks 
likely that the disagreements between the two copies of the system are 
localized in a "small" region around (.~, fi). 

We have tested this hypothesis as indicated in the histogram in Fig. 4, 
which shows the spatial dependence of disagreements between the two 
copies. We plot the histogram for various constrained models moving the 
site (.~, fi) along one of the four sides of V' and for many pairs of boundary 
conditions; in all cases that we considered, we obtained histograms similar 
to that depicted in Fig. 4. The results summarized in Fig. 4 strongly suggest 
that the disagreements between the two copies of the model are almost 
completely localized in a suitably chosen 3 x 2 rectangular block R c ,.. >,) c V'. 

Now, given the constrained model corresponding to a ' eQ 'v ,  and 
r ' eQ~)  . . . .  the above remarks suggest that the average number of dis- 
agreements between the two copies of the system strongly depends on the 
values of a[,...,.) with (x, y) E Re.,." ,,) and weakly on the values of a'~.,. >.) outside 
R(.,.. >,). Hence, we performed the statistics on the constrained model in the 
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Fig. 4. Each square of the plane X-Y represents a site (x, y) of a lattice V' with / =  6: the 
X axis is oriented from the left to the right, while the Y axis is oriented from the top of tile 
figure to the bottom. The results contained in the histogram refer to the chessboard model: 
the height of each column (x, y) is given by the ratio 

E~ ~, E,.,.. ,., ~ ,.. ( 1 - 6,.,,,.. b .,.?',: :1 

where 1= 1. l0 s is the number of full sweeps of the run. and Sq~,.!';'. , and S~].I'.i~ are the block 
variables of the two copies of the system oll tile site (x, 3') and after s sweeps. The results in 
the histogram were obtained by considering a pair of boundary conditions [ ~ ,  .~]to. 3p such 
that the two pairs of original spins in the block Bq0.31 are + - and - +. 

case / = 6 by  cons ider ing  all poss ible  cons t ra ined  mode l s  only  inside R~.,..~. 
In  the fol lowing we precisely descr ibe  how the stat ist ics was performed.  

�9 We cons idered  (,g, f i ) = ( 0 ,  3), R~.,~ ,~= {(x, y ) e  V' :  x =  1, 2 and  
2 ~< y ~< 4}, we modif ied  the b o u n d a r y  cond i t ion  in (.~, ~) in the six ways  
depic ted  in (5.1), and  in each case we cons idered  two possible  b o u n d a r y  
condi t ions  in O V ' + \ { ( , ? ,  f ) } .  

�9 All poss ible  cons t ra ined  mode l s  were cons idered  in R~.~..,,~, while in 
V ' k R c . , ; . ~  cons idered  only the chessboard  mode l  and  the mode l  with 

a'~.,...,.~= + 1, V(x, y ) ~  V ' \ R ~ . ; .  ~ .  Indeed,  we expect  that  these two mode l s  
are respectively the mos t  and  the least "dangerous"  ones,  as the results of  
the previous  stat ist ics suggest. 
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�9 In each run of the joint Monte Carlo algorithm we performed lO s 
full sweeps, that is, we updated the whole lattice V'IO 5 times. 

The results can be Summarized by saying that the most  dangerous 
constrained models inside Rt.~..,,~ appear to be 

+ - - +  - - + - -  + - - +  - - + - -  
(5.2) + - - +  - - + - -  - - + - -  + - - +  

in particular, our  (indeed quite small) statistics on the boundary conditions 
suggests that the most dangerous model among those in (5.2) is the second 
one; in this case, taking the chessboard model in V'\R~.e. ~ we obtain 

~,?/t.r ,.,. - 0 . 610  ""fl, I : ' ,  r  r '  - -  

The numerical results confirm the weak dependence of the estimators on 
the constrained model outside RI.,...,.~ as well; actually the differences are of 
5-10%. Finally, this set of Monte Carlo runs shows that the most 
dangerous ways in which one can modify the boundary conditions in (.g, ~) 
are 

+ + and + -  - +  (5.3) 

Once we understood the worst situations inside RI ....... ~ and in (.?, .9), 
we performed the wide statistics on the possible boundary conditions 
described below. 

�9 We considered the most dangerous constrained model inside R~.~..,,~. 

�9 We considered ten possible constrained models outside R c ....... ~; six 
of them are those depicted in Fig. 1, the remaining four were chosen at 
random. 

�9 In each case we considered 20 possible pairs of boundary conditions 
with the original spins in Box." ,~ and adjacent to V chosen as in (5.3). 

The weak dependence of the estimator on the constrained models out- 
side Re.e, ,.~ was confirmed and we found 

~k'/~. ~ . . . .  0.633, A~'?l/i. v, =0.011 (5.4) 

Hence we can confidently say that the condition (2.23) is satisfied if one 
considers the volume V' w i t h / =  6. 
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6.  C O N C L U S I O N S  

As we explained in Section 2, the problem of proving Gibbsianness of 
our renormalized measure is reduced to the verification of the DSU( V, ~) 
condition for some V and 0 < 1 for all possible constrained models. 

It is clear that disproving the condition for a given volume V is much 
easier than proving it, since, to disprove, it is sufficient to exhibit one con- 
strained model and one boundary condition for which a lower bound _9 ~ 
for the uniqueness parameter  appearing in the DSU exceeds one; moreover,  
since this lower bound involves variation distance and then thermal 
averages, it is naturally computable via a Monte Carlo procedure. On the 
other hand, an upper bound has to involve the consideration of all possible 
constrained models as well as all possible boundary conditions. Moreover, 
a priori it was not clear how to provide an upper bound based on a Monte 
Carlo computation; this motivated the idea of the dynamical surgery. The 
necessity of a Monte Carlo approach comes from the consideration of how 
fast the number  of constrained models and possible boundary conditions 
grows as a function of l, the side of the squared volume where we try to 
verify the DSU. 

Since for l =  2 we find a particular constrained model and boundary 
condition for which .i a is greater than one, necessarily we have to go at 
least to 1 = 3 and already the number of independent computat ions is very 
large. Moreover, since for l = 3 the lower bound seems always less than one 
whereas for at least one case the upper bound is larger than one, we can 
neither disprove nor try to prove with our bounds the validity of the DSU 
for a square with side 3, so that we have to go at least to l =  4. 

It appears clear from our numerical computat ions that our upper 
estimator ~' for the uniqueness parameter  has the correct behavior with l: 
as a consequence of the spatial localization of the set of disagreements 
between our two coupled processes, ~l/is inversely proportional  to l; thus, 
increasing l is the correct choice to get a value of ~lh so much smaller than 
one (including the error) that we can be confident in the validity of the 
DSU. Unfortunately, increasing I implies an enormous increase in the 
number of computations; introducing some statistics becomes necessary. 
The right compromise between smallness of ~ / a n d  number  of  constrained 
models and boundary conditions came out to be l =  6. In this case we per- 
formed the "rational statistics" that we described in Section 5 by exploiting 
the (numerically evident) small dependence of.Jl! on the constrained model 
and on the boundary condition far from conditioning spin that we are 
changing. 

Our  computat ions relative to the case l = 6 make us really confident of 
the uniform validity of the DSU. 
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We can say that our method is successful because even the correlation 
length of the "worst" constrained models is very small; however, it is not 
small enough to avoid the consideration of sides l at least greater than 4. 

We make now some general remarks on our Monte Carlo algorithm. 
As emphasized in ref. 6, the nice feature of finite-size conditions like 

the DSU, involving the behavior of Gibbs measures in finite volumes, is 
that they are able to imply absence of phase transitions and many nice 
properties of the unique &finite-vohune Gibbs state. This point of view is 
very helpful, for example, when we have to decide whether or not a given 
system is in the unique phase regime especially when we do not have a 
natural parameter (like the inverse temperature fl) whose smallness implies 
weak coupling. 

The "uniqueness test" based on the verification of the DSU has the 
advantage, with respect to the traditional Monte Carlo test, of being based 
on rigorous grounds. However, a real computer-assisted proof seems very 
difficult to achieve unless the concerned volumes are really very small. If 
this is not the case, the use of a Monte Carlo algorithm becomes essential; 
then the situation is somehow intermediate between a traditional Monte 
Carlo simulation and a computer-assisted proof. 

Our algorithm to compute a numerical upper bound on the 
Vasserstein distance between Gibbs measures, which is based on "local 
readjustment" of the coupling, seems to perform quite well and probably it 
can be used in more general contexts. Finally, it is remarkable that, due to 
the very nature of the coupling procedure, the statistical error on ~/ is 
much smaller that the corresponding one on ~ ;  indeed, in this last case all 
sites of our volume and not only the disagreements, as in the computation 
of "?/, play a role as a source of statistical errors. 

A P P E N D I X  

We consider the space S : = { I  ..... n} with n>~2 and the metric 
p(s, s') - ~(s, s') := 1 - 6.,...,.,, Vs, s' e S; let us denote by 2 and It two prob- 
ability measures on S and by :,~ the set of the joint representations of 2 
and/z. Hence, given q e .s one has that q is a probability measure on S x S 
such that 

~. q(s ,s ' )=l l (S ' )  Ys' e S  and ~+ q( s , s ' )=2(s )  V s e S  (A.1) 
x e .~" s" E .~' 

We recall, now, that the total variation distance and the Vasserstein 
distance between 2 and p are respectively given by 



1148 Cirillo and Olivieri 

where 

One has that 

Var(2,~) :=�89 ~ I~(s)-~(s)l  
s E S  

N,(2,/~):= inf ~ p(s,s').q(s,s') 
q ~ ";4"" s,s'E.b" 

Propos i t ion  A1. 

1. With the notation introduced before 

@,,(2,/~) = Var(2,/x) 

2. Let us consider the following partition of the set S: 

S = A u B u C  

(A.2) 

(A.3) 

(A.4) 

,4 := {seS: 2(s) >ll(s)} 

B := {s e S: ;,(s) </L(s)} 

C := {s~ S: ;,(s) =~(s)} 

(A.5) 

Var(2, l l )=  ~ (2(s)--/~(s))= ~ (~l(s)--2(s)) 
s ~ A s ~ B 

(A.6) 

Proof. 1. See ref. 4, p. 472. 

2. It is an immediate consequence of the normalization of/~ and 2. I 

We want now to calculate the particular joint representation q*~ ~" 
such that the following equality is satisfied: 

~/,(2,/~)= Y' p(s,s').q*(s,s') (A.7) 

That is, we are looking for the joint representation "optimizing" the sum 
in the definition of @/,(2, p). In other words by virtue of the above proposi- 
tion, we can say that our aim is to find an n x n square matrix 
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q * =  

t q *  ,, q *  * ,, q 3 . .  

ql,3 q*.3 q3.3 

ql ,2 q2�9 q3.2 

q I* I q*. I q3*. t 

' q "*" /  

" "  q"*- ' /  
* 9  � 9  q . .  _ / 

�9 . .  q , , * , /  

such that 

(A.8) 

q,...,.,-p.,.. Vs' = 1 ..... n and * q.,...,.. = 2.,. Vs = 1 ..... n (A.9) 
s= l  s ' = l  

and such that the sum of the off-diagonal elements is given by 

q.*,.' = Z (2,.--p.,)= ~ (p.,.-2,) 
.~', .~" : .~" ~ -  s '  s ~ , 4  .s" E B 

We have introduced the notation 2,. := 2(s) and p.,. :=p(s), V s ~ S � 9  

It is easy to see that the matrix 

* = m i n ( 2 . , . ,  q.,.., It.,.) 

1 
�9 -q.,... , .)(p.,.,-q.,.,. . , . ,  V s : / : s '  q.~..,., (2,. * * ) 

Var(2, p ) 

satisfies both (A.9) and (A.10)] j7"25~ 

(A.IO) 

(A.11) 
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